Corrected by:
ErratumZ Gastroenterol 2006; 44(11): 1201-1201
DOI: 10.1055/s-2006-927297
Zusammenfassung
Die enterische Glia stellt eine essenzielle Zellentität im Gastrointestinaltrakt dar.
Ohne die glial fibrillary acidic protein (GFAP) exprimierende Glia ist ein Überleben
des Organismus nicht möglich. Dies wurde in einem Tiermodell demonstriert. Bei Verlust
der enterischen GFAP-positiven glialen Zellen sterben die Tiere in kürzester Zeit
an einer schweren hämorrhagischen Darmentzündung. Die Mechanismen der enterischen
Glia, diese letal endende Darmentzündung zu verhindern und die Darmhomöostase aufrechtzuerhalten,
sind noch unbekannt. Es verdichten sich jedoch die Hinweise, dass die Sekretion neurotropher
Faktoren durch die enterische Glia ein Bestandteil der glialen Homöostaseregulation
zu sein scheint. Hierbei spielt die Sekretion von glia cell-derived neurotrophic factor
(GDNF), nerve growth factor (NGF) und transforming growth factor-β1 (TGF-β1) einen
wichtigen Einfluss auf die epitheliale Homöostase, und die Sekretion von Endothelinen
könnte an der intestinalen Vasoregulation beteiligt sein. Diese neuen Aspekte der
glialen Funktion im Darm legen mögliche Therapieansätze bei Erkrankungen wie M. Crohn
und dem Reizdarmsyndrom nahe.
Abstract
Enteric glia cells (EGCs) play an important role in the maintenance of tissue integrity
in the gastrointestinal tract. Thus, genetic ablation of glial fibrillary acidic protein
(GFAP)-positive EGCs in mice induced fatal haemorrhagic jejuno-ileitis and led to
death within a few days. The exact mechanisms of EGC to contribute to gut homeostasis
remain enigmatic. Several lines of evidence implicate that the secretion of neurotrophic
factors by EGC may be a part of the glial regulation of gut homoeostasis. The secretion
of glia cell-derived neurotrophic factor (GDNF), nerve growth factor (NGF) and transforming
growth factor-β (TGF-β) contributes to the maintenance of epithelial integrity and
the secretion of endothelins might be involved in vasoregulation. These new aspects
of intestinal glial functions implicate new therapeutic strategies for diseases like
Crohn’s disease and irritable bowel syndrome.
Schlüsselwörter
Morbus Crohn - chronisch entzündliche Darmerkrankung - Kolon irritabile
Key words
Crohn’s disease - chronic inflammatory bowel diseases - irritable bowel syndrome
Literatur
- 1
Bush T G, Savidge T C, Freeman T C. et al .
Fulminant jejuno-ileitis following ablation of enteric glia in adult transgenic mice.
Cell.
1998;
93
189-201
- 2
Cornet A, Savidge T C, Cabarrocas J. et al .
Enterocolitis induced by autoimmune targeting of enteric glial cells: a possible mechanism
in Crohn’s disease?.
Proc Natl Acad Sci USA.
2001;
98
13306-13311
- 3
Wedel T, Roblick U, Gleiss J. et al .
Organization of the enteric nervous system in the human colon demonstrated by wholemount
immunohistochemistry with special reference to the submucous plexus.
Ann Anat.
1999;
181
327-337
- 4
Krammer H J, Kuhnel W.
Topography of the enteric nervous system in Peyer’s patches of the porcine small intestine.
Cell Tissue Res.
1993;
272
267-272
- 5
Gabella G.
Ultrastructure of the nerve plexuses of the mammalian intestine: the enteric glial
cells.
Neuroscience.
1981;
6
425-436
- 6
Gershon M D, Rothman T P.
Enteric glia.
Glia.
1991;
4
195-204
- 7
Bjorklund H, Dahl D, Seiger A.
Neurofilament and glial fibrillary acid protein-related immunoreactivity in rodent
enteric nervous system.
Neuroscience.
1984;
12
277-287
- 8
Cabarrocas J, Savidge T, Liblau R S.
Role of enteric glial cells in inflammatory bowel disease.
Glia.
2003;
41
81-93
- 9
Endo Y, Kobayashi S.
A scanning electron microscope study on the autonomic groundplexus in the lamina propria
mucosae of the guinea-pig small intestine.
Arch Histol Jpn.
1987;
50
243-250
- 10
Mestres P, Diener M, Rummel W.
Electron microscopy of the mucosal plexus of the rat colon.
Acta Anat.
1992;
143
275-282
- 11
Gershon M D, Bursztajn S.
Properties of the enteric nervous system: limitation of access of intravascular macromolecules
to the myenteric plexus and muscularis externa.
J Comp Neurol.
1978;
180
467-488
- 12
Erde S M, Sherman D, Gershon M D.
Morphology and serotonergic innervation of physiologically identified cells of the
guinea pig’s myenteric plexus.
J Neurosci.
1985;
5
617-633
- 13
Bush T G.
Enteric glial cells. An upstream target for induction of necrotizing enterocolitis
and Crohn’s disease?.
Bioessays.
2002;
24
130-140
- 14
Jessen K R, Mirsky R.
Glial cells in the enteric nervous system contain glial fibrillary acidic protein.
Nature.
1980;
286
736-737
- 15
Ferri G L, Probert L, Cocchia D. et al .
Evidence for the presence of S-100 protein in the glial component of the human enteric
nervous system.
Nature.
1982;
297
409-410
- 16
Jessen K R, Mirsky R.
Astrocyte-like glia in the peripheral nervous system: an immunohistochemical study
of enteric glia.
J Neurosci.
1983;
3
2206-2218
- 17
Bannerman P G, Mirsky R, Jessen K R. et al .
Light microscopic immunolocalization of laminin, type IV collagen, nidogen, heparan
sulphate proteoglycan and fibronectin in the enteric nervous system of rat and guinea
pig.
J Neurocytol.
1986;
15
733-743
- 18
Von Boyen G B, Reinshagen M, Steinkamp M. et al .
Gut inflammation modulated by the enteric nervous system and neurotrophic factors.
Scand J Gastroenterol.
2002;
37
621-625
- 19
Von Boyen G B, Reinshagen M, Steinkamp M. et al .
Enteric nervous plasticity and development: dependence on neurotrophic factors.
J Gastroenterol.
2002;
37
583-588
- 20
Ruhl A.
Glial cells in the gut.
Neurogastroenterol Motil.
2005;
17
777-790
- 21
Von Boyen G B, Steinkamp M, Reinshagen M. et al .
Proinflammatory cytokines increase glial fibrillary acidic protein expression in enteric
glia.
Gut.
2004;
53
222-228
- 22
Von Boyen G B, Steinkamp M, Geerling I. et al .
Proinflammatory Cytokines Induce Neurotrophic Factor Expression in Enteric Glia: A
Key to the Regulation of Epithelial Apoptosis in Crohn’s Disease.
Inflamm Bowel Dis.
2006;
24
346-354
- 23
Bar K J, Facer P, Williams N S. et al .
Glial-derived neurotrophic factor in human adult and fetal intestine and in Hirschsprung’s
disease.
Gastroenterology.
1997;
112
1381-1385
- 24
di Mola F F, Friess H, Zhu Z W. et al .
Nerve growth factor and Trk high affinity receptor (TrkA) gene expression in inflammatory
bowel disease.
Gut.
2000;
46
670-679
- 25
Von Boyen G B, Steinkamp M, Reinshagen M. et al .
Nerve Growth Factor (NGF) secretion in cultured enteric glia cells is modulated by
proinflammatory cytokines.
J Neuroendocrinol.
Manuskript in press;
- 26
Neunlist M, Aubert P, Bonnaud S. et al .
Enteric glia inhibits intestinal epithelial cell proliferation partly through a TGF-{beta}1-dependent
pathway.
Am J Physiol Gastrointest Liver Physiol.
2006, Epub ahead of print;
- 27
Steinkamp M, Geerling I, Seufferlein T. et al .
Glial-derived neurotrophic factor regulates apoptosis in colonic epithelial cells.
Gastroenterology.
2003;
124
1748-1757
- 28
Ogura Y, Bonen D K, Inohara N. et al .
A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease.
Nature.
2001;
411
603-606
- 29
Reinshagen M, Rohm H, Steinkamp M. et al .
Protective role of neurotrophins in experimental inflammation of the rat gut.
Gastroenterology.
2000;
119
368-376
- 30
Barreau F, Cartier C, Ferrier L. et al .
Nerve growth factor mediates alterations of colonic sensitivity and mucosal barrier
induced by neonatal stress in rats.
Gastroenterology.
2004;
127
524-534
- 31
Lindsay R M, Harmar A J.
Nerve growth factor regulates expression of neuropeptide genes in adult sensory neurons.
Nature.
1989;
337
362-364
- 32
Collins S M, Vallance B, Barbara G. et al .
Putative inflammatory and immunological mechanisms in functional bowel disorders.
Baillieres Best Pract Res Clin Gastroenterol.
1999;
13
429-436
- 33
Chang L, Munakata J, Mayer E A. et al .
Perceptual responses in patients with inflammatory and functional bowel disease.
Gut.
2000;
47
497-505
- 34
Lembo T, Naliboff B, Munakata J. et al .
Symptoms and visceral perception in patients with pain-predominant irritable bowel
syndrome.
Am J Gastroenterol.
1999;
94
1320-1326
- 35
Chadwick V S, Chen W, Shu D. et al .
Activation of the mucosal immune system in irritable bowel syndrome.
Gastroenterology.
2002;
122
1778-1783
- 36
Dunlop S P, Hebden J, Campbell E. et al .
Abnormal intestinal permeability in subgroups of diarrhea-predominant irritable bowel
syndromes.
Am J Gastroenterol.
2006;
101
1288-1294
- 37
Coulie B, Szarka L A, Camilleri M. et al .
Recombinant human neurotrophic factors accelerate colonic transit and relieve constipation
in humans.
Gastroenterology.
2000;
119
41-50
- 38
Grider J R, Piland B E, Gulick M A. et al .
Brain-derived neurotrophic factor augments peristalsis by augmenting 5-HT and calcitonin
gene-related peptide release.
Gastroenterology.
2006;
130
771-780
- 39
Shanahan F.
Crohn’s disease.
Lancet.
2002;
359
62-69
- 40
Strater J, Wellisch I, Riedl S. et al .
CD95 (APO-1/Fas)-mediated apoptosis in colon epithelial cells: a possible role in
ulcerative colitis.
Gastroenterology.
1997;
113
160-167
- 41
Allescher H D.
Further extension of the brain-gut axis?.
Neurogastroenterol Motil.
2003;
15
243
- 42
Ehrenreich H, Schilling L.
New developments in the understanding of cerebral vasoregulation and vasospasm: the
endothelin-nitric oxide network.
Cleve Clin J Med.
1995;
62
105-116
- 43
Lerman A, Hildebrand jr FL, Aarhus L L. et al .
Endothelin has biological actions at pathophysiological concentrations.
Circulation.
1991;
83
1808-1814
- 44
Ruhl A.
Glial regulation of neuronal plasticity in the gut: implications for clinicians.
Gut.
2006;
55
600-602
- 45
Ruhl A, Franzke S, Collins S M. et al .
Interleukin-6 expression and regulation in rat enteric glial cells.
Am J Physiol Gastrointest Liver Physiol.
2001;
280
G1163-G1171
- 46
Mottet C, Uhlig H H, Powrie F.
Cutting edge: cure of colitis by CD4 +CD25 + regulatory T cells.
J Immunol.
2003;
170
3939-3943
- 47
Liu H, Hu B, Xu D. et al .
CD4 +CD25 + regulatory T cells cure murine colitis: the role of IL-10, TGF-beta, and
CTLA4.
J Immunol.
2003;
171
5012-5017
- 48
Denning T L, Qi H, Konig R. et al .
CD4 + Th cells resembling regulatory T cells that inhibit chronic colitis differentiate
in the absence of interactions between CD4 and class II MHC.
J Immunol.
2003;
171
2279-2286
- 49
Tozawa K, Hanai H, Sugimoto K. et al .
Evidence for the critical role of interleukin-12 but not interferon-gamma in the pathogenesis
of experimental colitis in mice.
J Gastroenterol Hepatol.
2003;
18
578-587
- 50
Nielsen O H, Kirman I, Rudiger N. et al .
Upregulation of interleukin-12 and -17 in active inflammatory bowel disease.
Scand J Gastroenterol.
2003;
38
180-185
- 51
Watanabe T, Kitani A, Murray P J. et al .
NOD2 is a negative regulator of Toll-like receptor 2-mediated T helper type 1 responses.
Nat Immunol.
2004;
5
800-808
- 52
Maeda S, Hsu L C, Liu H. et al .
Nod2 mutation in Crohn’s disease potentiates NF-kappaB activity and IL-1beta processing.
Science.
2005;
307
734-738
- 53
Tamboli C P, Neut C, Desreumaux P. et al .
Dysbiosis in inflammatory bowel disease.
Gut.
2004;
53
1-4
- 54
Schmid M, Fellermann K, Wehkamp J. et al .
The role of defensins in the pathogenesis of chronic-inflammatory bowel disease.
Z Gastroenterol.
2004;
42
333-338
- 55
Wehkamp J, Harder J, Weichenthal M. et al .
NOD2 (CARD15) mutations in Crohn’s disease are associated with diminished mucosal
alpha-defensin expression.
Gut.
2004;
53
1658-1664
- 56
Weinstock J V, Summers R, Elliott D E.
Helminths and harmony.
Gut.
2004;
53
7-9
- 57
Becker C, Wirtz S, Blessing M. et al .
Constitutive p40 promoter activation and IL-23 production in the terminal ileum mediated
by dendritic cells.
J Clin Invest.
2003;
112
693-706
- 58
Quigley E M.
Changing face of irritable bowel syndrome.
World J Gastroenterol.
2006;
12
1-5
- 59
Levy R L, Jones K R, Whitehead W E. et al .
Irritable bowel syndrome in twins: heredity and social learning both contribute to
etiology.
Gastroenterology.
2001;
121
799-804
- 60
Quigley E M.
Disturbances of motility and visceral hypersensitivity in irritable bowel syndrome:
biological markers or epiphenomenon.
Gastroenterol Clin North Am.
2005;
34
221-233
- 61
Quigley E M.
From comic relief to real understanding; how intestinal gas causes symptoms.
Gut.
2003;
52
1659-1661
- 62
Camilleri M.
Probiotics and irritable bowel syndrome: rationale, putative mechanisms, and evidence
of clinical efficacy.
J Clin Gastroenterol.
2006;
40
264-269
- 63
Barbara G, Stanghellini V, de Giorgio R. et al .
Activated mast cells in proximity to colonic nerves correlate with abdominal pain
in irritable bowel syndrome.
Gastroenterology.
2004;
126
693-702
- 64
Barbara G.
Mucosal barrier defects in irritable bowel syndrome. Who left the door open?.
Am J Gastroenterol.
2006;
101
1295-1298
- 65
Furness J B, Costa M.
Types of nerves in the enteric nervous system.
Neuroscience.
1980;
5
1-20
Dr. Georg von Boyen
Abteilung Innere Medizin I, Universität Ulm
Robert-Koch-Str. 8
89081 Ulm
Phone: ++49/7 31/50 04 03 26
Fax: ++49/7 31/50 04 03 31
Email: georg.boyen@medizin.uni-ulm.de